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Abstract - The application of the Bayesian 
theory of managing uncertainty and 
complexity to regression and classification in 
the form of Relevance Vector Machine (RVM), 
and to state estimation via Particle Filters (PF), 
proves to be a powerful tool to integrate the 
diagnosis and prognosis of battery health. 
Accurate estimates of the state-of-charge 
(SOC), the state-of-health (SOH) and state-of-
life (SOL) for batteries provide a significant 
value addition to the management of any 
operation involving electrical systems. This is 
especially true for aerospace systems, where 
unanticipated battery performance may lead to 
catastrophic failures. 
 
Batteries, composed of multiple electro-
chemical cells, are complex systems whose 
internal state variables are either inaccessible 
to sensors or hard to measure under 
operational conditions. In addition, battery 
performance is strongly influenced by ambient 
environmental and load conditions. 
Consequently, inference and estimation 
techniques need to be applied on indirect 
measurements, anticipated operational 
conditions and historical data, for which a 
Bayesian statistical approach is suitable. 
Accurate models of electro-chemical 
processes in the form of equivalent electric 
circuit parameters need to be combined with 

statistical models of state transitions, aging 
processes and measurement fidelity, need to 
be combined in a formal framework to make 
the approach viable. The RVM, which is a 
Bayesian treatment of the Support Vector 
Machine (SVM), is used for diagnosis as well 
as for model development. The PF framework 
uses this model and statistical estimates of 
the noise in the system and anticipated 
operational conditions to provide estimates of 
SOC, SOH and SOL. Validation of this 
approach on experimental data from Li-ion 
batteries is presented. 

INTRODUCTION 

Batteries form a core component of many 
machines and are often times critical to the well 
being and functional capabilities of the overall 
system. Failure of a battery could lead to reduced 
performance, operational impairment and even 
catastrophic failure, especially in aerospace 
systems. A case in point is NASA’s Mars Global 
Surveyor which stopped operating in November 
2006. Preliminary investigations revealed that the 
spacecraft was commanded to go into a safe 
mode, after which the radiator for the batteries 
was oriented towards the sun. This increased the 
temperature of the batteries and they lost their 
charge capacity in short order. This scenario, 



although drastic, is not the only one of its kind in 
aerospace applications. An efficient method for 
battery monitoring would greatly improve the 
reliability of such systems. 
 
The phrase “battery health monitoring” has a wide 
variety of connotations, ranging from intermittent 
manual measurements of voltage and electrolyte 
specific gravity to fully automated online 
supervision of various measured and estimated 
battery parameters. In the aerospace application 
domain, researchers have looked at the various 
failure modes of the battery subsystems. Different 
diagnostic methods have been evaluated, like 
discharge to a fixed cut-off voltage, open circuit 
voltage, voltage under load and electrochemical 
impedance spectrometry (EIS) [15]. In the field of 
telecommunications, people have looked to 
combine conductance technology with other 
measured parameters like battery 
temperature/differential information and the 
amount of float charge [5].  
 
Other works have concentrated more on the 
prognostic perspective rather than the diagnostic 
one. Statistical parametric models have been built 
to predict time to failure [9]. Electric and hybrid 
vehicles have been another fertile area for battery 
health monitoring [12]. Impedance spectrometry 
has been used to build battery models for 
cranking capability prognosis [3]. State estimation 
techniques, like the Extended Kalman Filter 
(EKF), have been applied for real-time prediction 
of SOC and SOH of automotive batteries [2].  As 
the popular cell chemistries changed from lead 
acid to nickel metal hydride to lithium ion, cell 
characterization efforts have kept pace. Dynamic 
models for the lithium ion batteries that take into 
consideration nonlinear equilibrium potentials, rate 
and temperature dependencies, thermal effects 
and transient power response have been built [7]. 
Automated reasoning schemes based on neuro-
fuzzy and decision theoretic methods have been 
applied to fused feature vectors derived from 
battery health sensor data to arrive at estimates of 
SOC, SOH and SOL [11]. Not withstanding the 
body of work done before, it still remains 
notoriously difficult to accurately predict the end-
of-life of a battery from SOC and SOH estimates 
under environmental and load conditions different 
from the training data set. This is where advanced 
regression, classification and state estimation 
algorithms have an important role to play.  
 
The following sections will expand more on the 
chosen algorithms, our implementation approach, 

the experimental setup, pertinent results and 
finally the conclusions drawn. 

METHODOLOGY 

Relevance Vector Machine 

Support Vector Machines (SVMs) [14] are a set of 
related supervised learning methods used for 
classification and regression that belong to a 
family of generalized linear classifiers. In a given 
classification problem, the data points may be 
multidimensional (say n). The task is to separate 
them by a n-1 dimensional hyperplane. This is a 
typical form of linear classifier. There are many 
linear classifiers that might satisfy this property. 
However, an optimal classifier would additionally 
create the maximum separation (margin) between 
the two classes. Such a hyperplane is known as 
the maximum-margin hyperplane and such a 
linear classifier is known as a maximum margin 
classifier. Nonlinear kernel functions can be used 
to create nonlinear classifiers [4]. This allows the 
algorithm to fit the maximum-margin hyperplane in 
the transformed feature space, though the 
classifier may be nonlinear in the original input 
space.  
 
This technique was also extended to regression 
problems in the form of support vector regression 
(SVR) [6]. Regression can essentially be posed as 
an inverse classification problem where, instead 
of searching for a maximum margin classifier, a 
minimum margin fit needs to be found. Although, 
SVM is a state-of-the-art technique for 
classification and regression, it suffers from a 
number of disadvantages, one of which is the lack 
of probabilistic outputs that make more sense in 
health monitoring applications. The Relevance 
Vector Machine (RVM) is a Bayesian form 
representing a generalized linear model of 
identical functional form of the SVM. Besides the 
probabilistic interpretation of its output, it uses a 
lot fewer kernel functions for comparable 
generalization performance. 
 
This type of supervised machine learning starts 
with a set of input vectors { }Nnn 1=t  and their 

corresponding targets{ }Nnn 1=θ . The aim is to learn 
a model of the dependency of the targets on the 
inputs in order to make accurate predictions of θ  
for unseen values of t . Typically, the predictions 
are based on some function )(tF  defined over 



the input space, and learning is the process of 
inferring the parameters of this function. In the 
context of SVM, this function takes the form: 
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and ),( iK tt is a kernel function. 
 
In the case of RVM, the targets are assumed to 
be samples from the model with additive noise: 
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where, nε  are independent samples from some 
noise process (Gaussian with mean 0 and 
variance 2σ ). Assuming the independence of nθ , 
the likelihood of the complete data set can be 
written as: 
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where, Φ is the N x (N+1) design matrix with 
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To prevent over-fitting a preference for smoother 
functions is encoded by choosing a zero-mean 
Gaussian prior distribution ℘ over w : 
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with η  a vector of N + 1 hyperparameters. To 
complete the specification of this hierarchical 
prior, we must define hyperpriors over η , as well 

as over the noise variance 2σ . 
 
Having defined the prior, Bayesian inference 
proceeds by computing the posterior over all 
unknowns given the data from Bayes' rule: 
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Since this form is difficult to handle analytically, 
the hyperpriors over η  and 2σ  are approximated 
as delta functions at their most probable values 

MPη  and 2
MPσ . Predictions for new data are then 

made according to: 
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Particle Filters 

Bayesian techniques also provide a general 
rigorous framework for dynamic state estimation 
problems. The core idea is to construct a 
probability density function (PDF) of the state 
based on all available information. For a linear 
system with Gaussian noise, the method reduces 
to the Kalman filter. The state space PDF remains 
Gaussian at every iteration and the filter equations 
propagate and update the mean and covariance 
of the distribution. For nonlinear systems or non-
Gaussian noise, there is no general analytic 
(closed form) solution for the state space PDF. 
The extended Kalman filter (EKF) is the most 
popular solution to the recursive nonlinear state 
estimation problem [10]. In this approach the 
estimation problem is linearized about the 
predicted state so that the Kalman filter can be 
applied. In this case, the desired PDF is 
approximated by a Gaussian, which may have 
significant deviation from the true distribution 
causing the filter to diverge.  
 
In contrast, for the Particle Filter (PF) approach [8] 
the PDF is approximated by a set of particles 
(points) representing sampled values from the 
unknown state space, and a set of associated 
weights denoting discrete probability masses. The 
particles are generated and recursively updated 
from a nonlinear process model that describes the 
evolution in time of the system under analysis, a 
measurement model, a set of available 
measurements and an a priori estimate of the 
state PDF. In other words, PF is a technique for 
implementing a recursive Bayesian filter using 
Monte Carlo (MC) simulations, and as such is 
known as a sequential MC (SMC) method. 
 
Particle methods assume that the state equations 
can be modeled as a first order Markov process 
with the outputs being conditionally independent. 
This can be written as: 
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where, x  denotes the state, y  is the output or 

measurements, and kϑ  and kω  are samples from 
a noise distribution.  
 



Sampling importance resampling (SIR) is a very 
commonly used particle filtering algorithm, which 
approximates the filtering distribution denoted as 
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The weight update is given by: 
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where, the importance distribution ),|( :11:0 kkk yxx −π  
is approximated as )|( 1−kkp xx . 

IMPLEMENTATION 

Model Development 

In order to tie in the above discussed techniques, 
namely RVM and PF, with the battery health 
monitoring problem, the process is broken down 
into an offline and an online part. During offline 
analysis, the battery/cell operation is expressed in 
the form of structural and functional models, which 
aid in the construction of the “physics of failure 
mechanisms” model. Features extracted from 
sensor data comprising of voltage, current, power, 
impedance, frequency and temperature readings, 
are used to estimate the internal parameters of 
the battery model shown in Figure 1. The 
parameters of interest are the double layer 
capacitance CDL, the charge transfer resistance 
RCT, the Warburg impedance RW and the 
electrolyte resistance RE. 
 

 
Figure 1. Lumped Parameter Model of a Cell 

 
The values of these internal parameters change 
with various ageing and fault processes like plate 

sulfation, passivation and corrosion. RVM 
regression is performed on parametric data 
collected from a group of cells over a long period 
of time so as to find representative ageing curves. 
Since we want to learn the dependency of the 
parameters with time, the RVM input vector t  is 
time, while the target vector θ  is given by the 
inferred parametric values. Exponential growth 
models, as shown in equation 10, are then fitted 
on these curves to identify the relevant decay 
parameters like C and λ : 

),exp(~ tC λθ =             (10) 

where, θ~  is the model predicted value of an 
internal battery parameter like RCT or RE. The 
overall model development scheme is depicted in 
the flowchart of Figure 2. 
 

 
 

Figure 2. Schematic of Model Development 
 

Diagnosis and Prognosis 

The system description model developed in the 
offline process is fed into the online process. Data 
from the system sensors are mapped into system 
features which is subsequently used to estimate 
the SOC and SOH. Once the diagnostics module 
detects a fault, it triggers the particle filtering 
prognosis framework. The PF uses the 
parameterized exponential growth model, 
described in equation 10, for the propagation of 
the particles in time. The algorithm incorporates 
the model parameters C  and λ  as well as the 
internal battery parameters RE and RCT as 
components of the state vector x , and thus, 
performs parameter identification in parallel with 
state estimation. The measurement vector y  
comprises of the battery parameters inferred fro 
measured data. The values of  C  and λ  learnt 
from the RVM regression are used as initial 
estimates for the particle filter. Resampling of the 
particles is carried out in each iteration so as to 
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RVM
Regression 

Model
Identification 

EIS
Data 

CDL 
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RE



reduce the occurrence of degeneracy of particle 
weights. Taking advantage of the highly linear 
correlation between RCT+RE and C/1 capacity (as 
derived from data), predicted values of the internal 
battery model parameters are used to calculate 
expected charge capacities of the battery. The 
current capacity estimate is used to compute the 
SOC while the future predictions are compared 
against end-of-life thresholds to derive remaining-
useful-life (RUL) estimates. Figure 3 shows a 
simplified schematic of the process described 
above. 
 

 
 

Figure 3. Particle Filter Framework 
 
It is to be noted that, in the application scope of 
this paper, all data was collected beforehand and 
hence, all analysis is effectively offline. In the 
absence of expert input all thresholds are 
arbitrarily chosen, while the SOH analysis is 
performed based on cause and effect studies 
published in literature.  

RESULTS 

The data used had been collected from second 
generation 18650-size lithium-ion cells (i.e., Gen 2 
cells) that were cycle-life tested at the Idaho 
National Laboratory under the Advanced 
Technology Development (ATD) Program, 
initiated in 1998 by the U.S. Department of Energy 
to find solutions to the barriers that limit the 
commercialization of high-power lithium-ion 
batteries. The cells were aged at 60% state-of-
charge (SOC) and various temperatures (25oC 
and 45oC). Table 1 gives the chemical details of 
the cells under test. 
 
The results for the model development section are 

presented in the form of 3 plots. Figure 4 shows 
the shift in electro-chemical impedance 
spectrometry (EIS) data of one of the test cells 
with ageing at 25oC. The nearly vertical left tails of 
the EIS plots are due to inductances in the battery 
terminals and connection leads. In some models 
this distributed inductance is represented in the 
form of a lumped inductance parameter L in series 
with the electrolyte resistance RE. The tails on the 
right side of the curves arise from diffusion based 
cell transport phenomena. This is modeled as the 
parameter RW in Figure 1.  

 
Table 1. Li-ion Cell Chemistry 

Positive 
Electrode 

8 wt% PVDF binder 
4 wt% SFG-6 graphite 
4 wt% carbon black 
84 wt% LiNi0.8Co0.15Al0.05O2 

Negative 
Electrode 

8 wt% PVDF binder 
92 wt% MAG-10 graphite 

Electrolyte 1.2 M LiPF6 in EC:EMC (3:7 wt%) 
Separator 25 μm thick PE (Celgard) 
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Figure 4. Shift in EIS Data with Ageing 

 
Figure 5 shows a zoomed in section of the data 
presented above in Figure 4 with the battery 
internal model parameters identified. Since the 
expected frequency plot of a resistance and a 
capacitance in parallel is a semicircle, we fit 
semicircular curves to the central sections of the 
data in a least-square sense. The left intercept of 
the semicircles give the RE values while the 
diameters of the semicircles give the RCT values. 
Other internal parameters like RW and CDL are not 
plotted since they showed negligible change over 
the ageing process and are excluded from further 
analysis. 
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Figure 5. Zoomed EIS Plot with Internal Battery Model Parameter Identification 

 
Figure 6 shows the output of the RVM regression 
along with the exponential growth model fits for RE 
and RCT. The use of probabilistic kernels in RVM 
helps to reject the effects of outliers and the 
varying number of data points at different time 
steps, which can bias conventional least-square 
based model fitting methods. 
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Figure 6. RVM Regression and Growth Model Fit 

 
Figure 7 shows both the state tracking and future 
state prediction plots for data collected at 45oC. 
The threshold for fault declaration has been 
arbitrarily chosen. The estimated λ  value for the 
RCT growth model (equation 10) is considerably 
larger than of the training data (collected at 25oC). 
Consequently, the SOH diagnosis is that the cell 
has undergone rapid passivation due to the 
elevated temperatures. 
 
Figure 8 shows the high degree of linear 
correlation between the C/1 capacity and the 
internal impedance parameter RE+RCT. We exploit 
this relationship to estimate the current and future 
C/1 capacities. The SOC is derived by subtracting 

the amount of charge drawn ( )∫ Idt  from the 

estimated capacity.  
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Figure 7. Particle Filter Output 
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Figure 8. Correlation between Capacity and 

Impedance Parameters 



Remaining-useful-life (RUL) or time-to-failure 
(TTF) is used as the relevant metric for SOL. This 
is derived by projecting out the capacity estimates 
into the future (Figure 9) until expected capacity 
hits a certain predetermined end-of-life threshold. 
The particle distribution is used to calculate the 
RUL probability density (pdf) by fitting a mixture of 
Gaussians in a least-squares sense. As shown in 
Figure 9, the RUL pdf improves in both accuracy 
(centering of the pdf over the actual failure point) 
and precision (spread of the pdf over time) with 
the inclusion of more measurements before 
prediction. 
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Figure 9. Particle Filter Prediction 

CONCLUSIONS 

The combined Bayesian regression-estimation 
approach implemented as a RVM-PF framework 
has significant advantages over conventional 
methods of battery health monitoring. Batteries, 
composed of multiple electro-chemical cells, are 
complex systems whose internal state variables 
are either inaccessible to sensors or hard to 
measure under operational conditions. In addition, 
battery performance is strongly influenced by 
ambient environmental and load conditions. 
Consequently, inference and estimation 
techniques need to be applied on indirect 
measurements, anticipated operational conditions 
and historical data, for which a Bayesian statistical 
approach best suited. In addition, the discussed 
methodology does not simply provide a mean 
estimate of the time-to-failure; rather it generates 
a probability distribution over time that best 
encapsulates the uncertainties inherent in the 
system model and measurements and in the basic 
concept of failure prediction. 
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